👀 家人們,每天看行情、刷大佬觀點,卻從來不開口說兩句?你的觀點可能比你想的更有價值!
廣場新人 & 回歸福利正式上線!不管你是第一次發帖還是久違回歸,我們都直接送你獎勵!🎁
每月 $20,000 獎金等你來領!
📅 活動時間: 長期有效(月底結算)
💎 參與方式:
用戶需爲首次發帖的新用戶或一個月未發帖的回歸用戶。
發帖時必須帶上話題標籤: #我在广场发首帖 。
內容不限:幣圈新聞、行情分析、曬單吐槽、幣種推薦皆可。
💰 獎勵機制:
必得獎:發帖體驗券
每位有效發帖用戶都可獲得 $50 倉位體驗券。(注:每月獎池上限 $20,000,先到先得!如果大家太熱情,我們會繼續加碼!)
進階獎:發帖雙王爭霸
月度發帖王: 當月發帖數量最多的用戶,額外獎勵 50U。
月度互動王: 當月帖子互動量(點讚+評論+轉發+分享)最高的用戶,額外獎勵 50U。
📝 發帖要求:
帖子字數需 大於30字,拒絕純表情或無意義字符。
內容需積極健康,符合社區規範,嚴禁廣告引流及違規內容。
💡 你的觀點可能會啓發無數人,你的第一次分享也許就是成爲“廣場大V”的起點,現在就開始廣場創作之旅吧!
阿里大模型又開源!能讀圖會識物,基於通義千問7B打造,可商用
來源:量子位
繼通義千問-7B(Qwen-7B)之後,阿里雲又推出了大規模視覺語言模型Qwen-VL,並且一上線就直接開源。
舉個🌰,我們輸入一張阿尼亞的圖片,通過問答的形式,Qwen-VL-Chat既能概括圖片內容,也能定位到圖片中的阿尼亞。
首個支持中文開放域定位的通用模型
先來整體看一下Qwen-VL系列模型的特點:
按場景來說,Qwen-VL可以用於知識問答、圖像問答、文檔問答、細粒度視覺定位等場景。
比如,有一位看不懂中文的外國友人去醫院看病,對著導覽圖一個頭兩個大,不知道怎麼去往對應科室,就可以直接把圖和問題丟給Qwen-VL,讓它根據圖片信息擔當翻譯。
視覺定位能力方面,即使圖片非常複雜人物繁多,Qwen-VL也能精準地根據要求找出綠巨人和蜘蛛俠。
研究人員在四大類多模態任務(Zero-shot Caption/VQA/DocVQA/Grounding)的標準英文測評中測試了Qwen-VL。
另外,研究人員構建了一套基於GPT-4打分機制的測試集TouchStone。
如果你對Qwen-VL感興趣,現在在魔搭社區和huggingface上都有demo可以直接試玩,鏈接文末奉上~
Qwen-VL支持研究人員和開發者進行二次開發,也允許商用,不過需要注意的是,商用的話需要先填寫問卷申請。
項目鏈接:
-聊天
論文地址: